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COMPACTNESS THEOREMS FOR KAHLER-
EINSTEIN MANIFOLDS OF DIMENSION 3 AND UP

GANG TIAN

There has been increasing interest lately in compactness theorems of
Riemannian manifolds under various geometric assumptions (see, among
others, [3], [10], [1], [7], and [19]). More recently, it has been found that
the boundedness condition on the curvature as in [3] and [10] can be re-
placed by some integral norms of the curvature tensor. One of those often
used is the L"/*-norm on the curvature tensor, where 7 is the real dimen-
sion of the underlying manifold. For instance, in [1] and [19], the authors
show that if {(M,, g,)} is a sequence of Einstein manifolds of real dimen-
sion 2n satisfying: (i) diam(M,, g;) < u; (ih) fM'_ ||Rm(gi)||'gfl_dV:gi < u;
and (iii) Vol(M,, g;) > % , where 4 is a uniform constant, then the subse-
quence of {(M,, g;)} converges to an Einstein orbifold with finitely many
isolated singular points. Also see [20] for the case of Kihler-Einstein sur-
faces. The case that the limit is an orbifold does occur in dimension four
(cf. [15], [20]). However, in this paper, we show that it cannot occur for
Kihler-Einstein manifolds of higher dimension and nonzero scalar curva-
ture. In order to give our main theorem precisely, we need to introduce
some notation first. For any fixed constant x4 > 0 and positive inte-
ger n > 0, denote by K(u, n) the set of all Kihler-Einstein manifolds
(M, g) of complex dimension n satisfying:

(0.1) | diam(M , g) < u,
02) [ 1Rme);av, <u,
(0.3) - Vol (M) > 1/u,

where Rm(g) denotes the curvature tensor of g. Let K (u,n) (resp.
K _(u, n)) be the subset of all (M, g) in K{u, n) with Ric(g) = w,
(resp. Ric(g) = ~w g) , where @, is the associated Kihler form of g.
We should point out that the diameters of the manifolds in K (u, n) are
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bounded from above by a constant depending only on #.

Our first main theorem is stated as follows:

Theorem 1. K (i, n) (resp. K_(u, n) is compact for n > 3.

A related problem is the classification of complete Ricci-flat Kahler man-
ifolds with bounded L"-norm of the curvature tensor. The examples of
such manifolds can be constructed in the following way (cf. [21], [25]).
Let ' ¢ SU(n) be a finite group acting on C” with the origin as its
unique fixed point. We further assume that C"/I" admits a resolution
M such that the push-down of dz, A---Adz, on C”" can be extended
nonvanishingly across the exceptional divisor, in other words, the canoni-
cal line bundle K,, is trivial. Note that this assumption is automatically
true in the case n < 3. Then M has a complete Ricci-flat Kidhler metric
with bounded L"-norm of the curvature. In the case n = 2, it was proved
before by Hitchin and P. Kronheimer using a different method ([13], [17]).

Theorem 2. Let (M, g) be a complete Ricci-flat Kdhler manifold with
the L"-norm of its curvature tensor bounded. Then M is a resolution of
C"/T for some T C SU(n) with K,, trivial.

The organization of this paper is as follows. In §1, we recall that for any
sequence of Kahler-Einstein manifolds in either X (1, n) or XK_(u, n),
a subsequence of it converges to a Kéhler-Einstein orbifold in the sense
of Cheeger-Gromov (cf. Theorem 1.1). We include an outlined proof
of it here following the arguments in §3 of [20]. In §2, we prove the
continuity of the dimensions of plurianticanonical or pluricanonical di-
visors under the convergence of Kihler-Einstein manifolds in Cheeger-
Gromov’s sense. The basic analytic tool is Hérmander’s L*-estimate for
0-operators. We will also discuss some corollaries of this continuity result.
In §3, using Kohn’s estimate for 5b-operators on strongly pseudoconvex
CR-manifolds, we study the local structure of the Kihler-Einstein orbifold
M__ being the limit of Kéhler-Einstein manifolds. In particular, we prove
that M__ is in fact a manifold. §4 contains the proof of Theorem 2. In
§5, we complete the proof of Theorem 1 based on the discussions in the
previous sections.

The key idea of this paper occurred to the author during his attendance
in Professor J. Kohn’s class in Princeton University when he was visiting
there. The author would like to express his gratitude to both the institute
and Professor Kohn.

1. Convergence to Kiihler orbifolds

An rn-dimensional complex orbifold M is a topological space satisfying:
(1) each point x in M admits an open neighborhood U, homeomorphic
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to D*/T,, where D" is the unit disc in C", and I', C U(n) is a finite
group; and (2) those U are patched together by biholomorphic transition
functions. Any point x with I' trivial is called a regular point of M .
In particular, M is a manifold near such a regular point. Denote by Mreg
the set of all regular points. All other points are singular points of M,
ie., Sing(M) = M\M_, . We will confine ourselves to the special case
that Sing(M) consists of isolated points, although it is not necessary for
the following discussions. A Kihler metric is just the one on M, such
that for each x in Sing(M), if y : D" — U, is the local uniformization,
then w; g can be extended across the origin.

Now suppose g be a Kihler orbifold metric on M . In the case Ric(g)
= ia)g on M for some constant A, we call (M, g) a Kihler-Einstein
orbifold metric.

Theorem 1.1. Let {(M,, g,)} be a sequence of Kihler-Einstein mani-
folds in either K _(u, n) or K_(u, n). By taking a subsequence of it, we
may assume that (M, g;) converges to Kdhler-Einstein orbifold (M__, g_.)
in Cheeger-Gromov’s sense, that is, there are finitely many points x;, -+ ,
X,y in M, and x_,, - ,x_y in M_, where N is a positive integer de-
pending only on n, u such that, for any r > 0, there are diffeomorphisms
¢; from MAUy_, B,(x, ,8,) into M, with K, = M_\Ujy_, By, (x5, 8)
in the image and satisfying:

(1) in the Cs-topology, (¢i_1)* g, converges to g uniformly on K_;

(2) in the C 5-topology, ¢;.0J;0 (¢i_l)* converges to J_ uniformly on
K, , where J,, J_ are the almost complex structures of M,, M_, respec-
tively.

Theorem 1.1 can be derived from the compactness theorem stated in [1]
or [19] (see also [20] for the special case of Kihler-Einstein surface). But
for the reader’s convenience, we outline a proof of it here. For simplicity,
we may assume (M, g;) soin K, (u, n) forall ;. The key analytic tool is
Uhlenbeck’s Yang-Mills estimate for curvatures of Yang-Mills connections.

Lemma 1.1. Let (M,, g,) be a Kihler-Einstein manifold given as in
Theorem 1.1. Then there are uniform constants C', C", depending only
on the upper bound of n and u, such that for any f in c! (M;, R)

(n—1)/n
e ([ e an) e b

< [ 1vriav,,
M, !

i

where V f denotes the gradient of f .

(1.1)
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Proof. This follows from a combination of results in C. Croke [5] and
P. Li[18]. ‘ ‘

Lemma 1.2. Let N be the integer [u/(CY']1 + 1, where C' is the
Sobolev constant given in (1.1), and [a] denotes the integer part of the
real number a. Then there is a universal constant C > 0, such that for
any r € (0, 1) and any Kdihler-Einstein manifold (M, , g;) as in Theorem
1.1, there are finitely many points-x;;, --- ', x;, in M, such that for any

in
x € MAUY_, B.(x};, &),

‘ 1/2
. C 112 '
(1.2) IRl (x) < = ( /;9 . llR(z)Hgi(x)dI{gi) ,

where B, (x| 50 &) IS the geodeszc ball with radius r and center at x; ’E and
IR, is the norm of R(i) with respect to g,.

Proof A straightforward computation shows

(1.3) A (IR ) < IR, (n)(IIR(i)Ilgi)?,

where A is the laplacian of g, , and C (n) is a positive constant depend-
ing only on n, whose actual value: is not important to us. Define

2
[ RGN av, > s} .
Br/4(X,gi) ! !

Then by the well-known covering lemma, E; canbe covered by N geodesic
balls of radius 5. Take Jcl1 RN fo to be the centers of these balls. Then

for any x € M\ Uﬂ:l B (x] ip 8)>

(15 [ R, <e.
r/4(x &) ‘ !

(1.4) E, = {xeM,.

Let 7: Ri — Ri ={te R! |t > 0} be a cut-off function satisfying n =1
fort<1,and n=0 for t>2 and |5'(¢)| < 1.

For any x 6‘1\/!,.\ ngl Br(xl.rﬂ » &), denote by p (-) the distance func-
tion on M, from x.

Put f =||R(i)], . Multiplying n°(8p_/r)f on both sides of (1.3) and
then integrating by parts, one obtains

[ wanray,

(1.6 M- '
’ 2 .2 2,2 2,3
<[ wriav,+ [ wvniriav, + [ wiflav,.
Mf ! M i Mi i
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By Lemma 1.1 and Holder’s inequality,

(n=1)/
C/ (/ Mflzn/(n_l)dVg_) _ C,/// Mflz dVg
M,- i A{( i
an < (rf e )Ifl av,
M, r

i

1/n ’
+ (/ |77f|ndVg,) (/ ,f,Zn/(n—l)dVg)
M, ’ B,u(x,8) :

Therefore, for some constant C > 0 depending only on n, we have
(1.8)

(n—1)/n C
2n/(n—1) , 2
/] dV_) < ————-/ FRdv, .
(/B,/su,g,-) & P(C" = VE) JB,,(x,8) &

2 p(n+1)/(n=1)

(n=1)/n

Similarly, by multiplying #»
cessing as above, we have

) (n=1)/n
</ |f [/ dva_)
Br/16(x’gi) !

e
r(5EC — VE) I8x.8)

on both sides of (1.3) and pro-

(1.9)
2n/(n—1)
If| av, .

Let ¢ < ((n— 1)/4n)*(C')* and choose k satisfying (n/(n —1))* > n.
Continuing the above processes k times, we obtain

((n=1)/n)*
k .
/ |f /=) av,
B’/Zk(x:gi) !

1/2
o S__C__(/ |f|2dV.) .
P A==0/m \Jp (x, ) A

Then (1.2) follows from Moser’s iteration as in the proof of Theorem 8.17
in [16]. q.e.d.

We further observe that we may take the set {xlrl/ 4o X! 4} contained
in the union of the balls B, (x; 5> g;). Let {r; } i>1 bea decreasmg sequence

of positive numbers such that r, 5 R /4. If we write x/ ip as xl )
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and define
. N .
(L1 Q= M\ By, (x5, 2,
p=1
then
Q-zl g Q-l{+ (%l) and U Q';I = Mi\{xil y T x[N}s
j>1

where x,, = lim,_, xl’ﬂ ,and forany | < B <N,
Q{u(g) ={xe Q{+1|distgi(x, 8fo+1) > e},

The following lemma is essentially a special case of the famous Gromov’s
compactness theorem (cf. [10], [12]).

Lemma 1.3. Let {(X;, h,)} be a sequence of n-dimensional Kdihler-
Einstein manifolds (maybe noncompact), and Q, a sequence of domains
in X; with boundary 0Q,;. Suppose the following for all i:

(i) The norm ||R(h,)||, (x) of the bisectional curvatures R(h,) are uni-
Jormly bounded for x in Qi.

(1) InjRad(x) > ¢, for x € Q, and for some constant depending only
on i.

(iii) 0<C’' < V°1hi(Qz) < C" for some uniform constants C', C" .
Then given any € > 0, there is a subsequence {Qik (e), hik} k> of Kdhler-
Einstein manifolds {Q,(¢), h;};.,,, where Q,(e) = {x € Q] dist, (x, 0Q,)
> ¢}, and a Kdhler-Einstein manifold (Q_ (&), h) such that fo; the com-
pact subset K C Q_ (&), there is an ¢ > & such that for k sufficiently
large, there are diffeomorphisms ¢, of Ql.k(s') into Q_ (&) satisfying:

(1) K C ¢, ( (&) forany k21,

2) (qS;I)*hl. converges uniformly to h_ on K,

(3) (), od;o (qb,:l),k converges uniformly to J_ on K, where J;, J_
are the almost complex structures of Q,, Q__(¢), respectively.

Proof. By some standard computations and the assumption that the
(X;, h;) are Kéahler-Einstein manifolds, the bisectional curvature tensor
R(h;) satisfies a quasi-linear elliptic system. The assumptions (i), (ii),
and (iii) imply that the Sobolev inequalities hold on Q,(e) with uniform

Sobolev constants. It follows from some well-known elliptic estimates (cf.
[27]) that
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(1.12) ID'R(A), () S CWH),  1=1,2, 00,

where DIR(hi) denotes the /th covariant derivative of R(h,) on €,, and
the C(/) are uniform constants depending only on /. Then by Gromov’s
compactness theorem ([10], [12]), there is a subsequence {(Qik(e) , hik)}
and a Riemannian manifold (Q_ (¢), A, ) such that the above (1) and
(2) hold. Let K be any compact subset in Q_ (), and ¢, defined as in
the statement of this proposition. For the almost complex structure J;, on
Q,, it is clear that (¢, ), o Jik o (qS,:l)* is almost complex on K . By taking

the subsequence of {i, }, we may assume that (¢,), o Jik ) (qS,:l) converges
on K. Since K is arbitrary, we obtain an almost complex structure J__
on Q_(¢). It is easy to check that this J_ is integrable, and A is a
Kéhler-Einstein metric with respect to this J_ g.e.d.

Since diam(M;, g;) < # and Vol(M,, g;) > for all i, by an estimate
on the injectivity radius in [4], one can prove that assumptions (i)—(iii) in
Lemma 1.3 are fulfilled by (Qf » &)s i,J 2 1. Therefore, we have a
sequence of open Kihler-Einstein manifolds (Qio , gio) . Furthermore,
one can identify Qﬁo naturally with a subdomain in Qj *! such that the
restriction of gj+1 to Q! coincides with g’ . Therefore the { )
can be glued together to be a Kihler-Einstein manifold (M__, g_). By
Fatou’s lemma,

/ VRl ¥, <u.

Also, it follows from the Volume Comparison Theorem [2] that M;o
has only finitely many connected components.

Let p; be the distance function on M, x M, induced by g;, and let p__
be the limit of p;. Obviously, p_ is Lipschitzon M_ = M;o . According
to [10], one may attach finitely many points x_,, - , x_y 10 M;o such
that M = M;o U{x,;, ", X, becomesa compact length space with
length function p_, extending that p_ on M;o x M;o . We need to give
a Kahler orbifold structure on M_

Lemma 1.4. There is a decreasing positive function &(r), satisfying
lim__ _ &(r) =0 such that for any point x in M., we have

(f(X))
r’(x)

where r(x) =min{p_ (x;, X)|1 <j < N}.

>

|Rm(g, )I(x) <
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This is simply a corollary of Lemma 1.2. Using the trick of blowing
up and the curvature estimate in Lemma 1.4, one can endow M__ with a
topological orbifold structure at x__ 8 (1 < B < N). Precisely, for each
B, there is an open neighborhood U, [ of x, such that each connected

component Uﬂ ; (1<j<! /?) of - Uﬂ N M;o is covered by a smooth man-

ifold U 4; diffeomorphic to the punctured ball D! in C". The covering
group 1"[, ; is isomorphic to a finite group in U(n). Moreover, let gbﬁ ;

be the diffeomorphism from D onto Uﬂ ; and let Mg Uﬂ ;= Uy, be

the covering map. Then ¢;j o n; 1800 €xtends to be a C-metric on D,
where D) = {x|3C", |x| < r}, D} = D'\{0}. We refer readers to §3 in
[20] for the details of its proof.

In order to obtain a Kiéhler orbifold structure on M__, we have to prove
that the curvature tensor Rm(g_ ) is in fact bounded. From Lemma 1.4
follow the topological orbifold structure of M_ and the analogy of Uh-
lenbeck’s removable singularity theorem [27]. In §4 of [20], this bound-
edness of Rm(g_ ) is proved for surfaces, i.e., for n = 2. However,
the whole argument can be generalized to higher dimensions without sub-
stantial change. Next, as the author did in Lemma 4.4 and 4.5 of [20],
one can construct a diffeomorphism ¥ from D: into itself such that
who (b; I n; 180 €xtends smoothly across the origin, where ¢_; and 7y,
are the same as in last paragraph. Therefore, (M_, g ) is a Kihler-
Einstein orbifold with Ric(g_) = @ <

Note that M__ is in fact connectedoo(cf. [20]). However, we do not need
this fact in the following arguments, and the sketched proof of Theorem
1.1 is finished.

2. Convergence of pluricanonical or plurianticanonical divisors

Let {(M,, g)},., be a sequence of Kihler-Einstein manifolds in ei-
ther K (u,n) or K_(u,n). By Theorem 1.1, we may assume that
(M;, g;) converges to a Kihler-Einstein orbifold (M_, g, ) in the sense
of Cheeger-Gromov. In this section we will apply the L*-estimate for 3
operators to show the convergence of H’ (M, K,/ to H° (M, K;™)
for any integer m as (M, g;) approaches (M__, Igoo). Recall that Alo;
is a Kidhler orbifold with only isolated quotient singularities.

A line bundle L on M__ is a line bundle on the regular part M;o
such that for each local uniformization =, : (7x — M__ of a singular
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point X, the pullback n;L on (N]x\n—l(x) can be extended to the whole
l~]x. The natural line bundles on Moo are pluricanonical and plurianti-
canonical ones KA"}M (m € Z). A global section of Kf";w is an element
in HO(M;o , K;}'m) , which can be extended across the singular set in the

above sense. Then H O(Moo , KA"I' ) is just the linear space of all the global
sections of K, v . Note that thoe metric g induces natural hermitian
orbifold metrlcsmon Ky

Lemma 2.1. Let {(M g;)} be the sequence of Kéhler-Einstein mani-

folds given at the begmnzng of this section and let S' bea global holomor-
phic section in H° (M;, K_'") with fM IS ” dV =1, where m is a fixed

positive integer. Then there is a subsequence {z k} of {i} such that the sec-
tions S’ converge to a global holomorphic section S in H 0(Moo , K;lm) .
In particular, if {S;?}0 <p<N, is an orthogonal basis of H° (M, K;l"" ) with
respect to the induced inner product by g;, then by taking a subsequence,
we may assume that {S;?}0 <p<n_ COmverges to an orthonormal basis of a
subspace in H® (M, KM ), where N, + 1 —dlmCH (M, K,/").
Remark. Before we prove this lemma we should Justlfy the meaning
of the convergence of {S'} in the above lemma since these sections are no

longer on the same Kihler manifold. Recall that for any compact subset
K c M_\Sing(M_ ), there are diffeomorphisms ¢, from compact subsets
K, C M; onto K such that (¢, ) g and ;. o0 J o (d; ) converge to
g, and J_ on K, respectively. Now with ¢, as above we can push the
sections S° down to the sections b, (SY) of RMA(TM & TM_)) on
K . The convergence in Lemma 2.1 means that for any compact subset K
of M_\Sing(M_) and ¢, as above, the sections ¢ L(S™) converge to a
section S of K M"' on K in the C™-topology. Note that the limit S
is automatically holomorphlc

Proof of Lemma 2.1. Let A, be the laplacian of the metric g;. Then
by a direct computation, we have

2 02 i 2
(2.1) A;(I8" 1, )(x0) = ID;S I, (x) = nml|S" Il (x) ,
where D is the covariant derivative with respect to g;. Since

/ M, ||S || (x) d V =1, by Lemma 1.1 and applying Moser’s iteration to
(2. 1) there is a constant C(n, m) depending only on m such that

(22) sup([IS[2 (x)) < C(n, m).
M, 7
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Let K be a compact subset in M_\ Sing(M_ ), and ¢, the diffeomor-
phism from K, onto K as in the above remark. To prove the lemma, it
suffices to show )
 (x): for any integer / > 0, the /th covariant derivatives of $,.(S")
with respect to g are bounded in K by a constant C,' depending only
on / and X.

There is an r > 0, depending only on K, such that for any point
x in K, the geodesic ball B, (x, g) is uniformly biholomorphic to an
open subset in C”. On each B [(x, &), the section S; is represented
by a holomorphic function f. . By (2.1), the functlon f. is uni-
formly bounded. Therefore, by the well-known Cauchy mtegral formula
one can easily prove that at x the /th covariant derivative of S’ is uni-
formly bounded by a constant depending only on /, K. (*) follows since
(qb_l)*gi uniformly converges to g_ in K. Hence the lemma is proved.
g.e.d.

The following proposition can be easily proved by modlfymg the proof
of [14, p. 92, Theorem 4.4.1] with the use of the Bochner-Kodaira Lapla-
cian formula (see, e.g., [16]).

Proposition 2.1. Suppose that (X, g) is a complete Kdhler orbifold of
complex dimension n, L a line bundle on X with the hermitian orbifold
metric h, and v a function on X which can be approximated by a decreas-
ing sequence of smooth functions {W,}, ;.. - If. for any tangent vector v
of type (1, 0) at any point of X and for each 1,

(2.3) <aé‘w,+%(Ric(h)+Ric<g»,uAv> > Cllv 2,
g

where C is a constant independent of [, and { , ) ¢ S the inner product
induced by g, then for any C* L-valued (0, 1)-form w on X with
dw =0 and f, ||w||2e_‘”dVg finite, there exists a C* L-valued function
u on X such that du=w and

(2.4) [ e av, < & [ jwite™ av,,
where ||-|| is the norm induced by h and g.

Lemma 2.2. Any section S in HO(Moo , KA}:) is the limit of some
sequence {Si} with S' in HO-(Mi, K;l:"). In particular, this implies that
the dimension of H'(M__, KA}:’) is the same as that of H'(M,, K;l:” ),

that is, plurianticanonical dimensions are invariant under the degeneration
of Kéhler-Einstein manifolds in either K (u, n) or K_(u, n).
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Proof. We may assume that fM ||S|| ( )dV, =1. Let {r;} bea
sequence of ‘positive numbers with Tim r;=0 such that for each i, there

l—»oo
is a diffeomorphism ¢, from A\ Uﬁ=l r'_(xiﬂ, g;) into M,\Sing(M_ )
as given in Theorem 1.1, where N is defined in Lemma 1.2, and X;p are
defined in (1.3). Then ¢, satisfies the following facts:

(1) lim Im(¢,)) is just M_ )\ Sing(M_ ),

(2) (¢; Iy g; uniformly converges to g_ on any compact subset of
M_\Sing(M_ ) in the C*-topology,

(3) ¢y 0J;0 (¢i_l)* converges to J_, where J;, J_ are the almost
complex structures on M, M_ , respectively.

Define a cut-off function #: R' > RL satisfying n(¢) =0 for 1 < 1,
and 7(t) =1 for t > 2 and || < 1. Also let m; be the natural projec-
tion from the bundle @™ (A"(TM, ® TM,)) onto K;{'m =Q"(A'TM,).
For each i, we have a smooth section v, = n(p,(x)/2r,)- =, ((qb_l) S) of
K;{'” on M;, where p,(x) is a L1psch1tz function deﬁned by p,(x) =
min, _, y{dist, (x, x;5)}. Then by facts (2) and (3) above, there is a
decreasing function g4(r) on r with lim, _  &,(r) =0 such that

oo

N
(25 sup {nc“»,n,««b; NS, (€ M\ By, (x,5 g,.)} <ay(r),
p=1

2.6) [ I v, 1)< 6,0,

where 51‘ is the corresponding 8- operator on M;.
By (2.5), we have

/M_ 180,12 (x)dV, < &7, Vol (M)

N f: /B I (v (g_)) 2, ((67).8)

1
VOl -—2 OI(B ,ﬁ, g[))
ri

2

(x)dV.

8;

(2.7)

] Mz

N
X sup {ll(qb,-‘l),Sll;(X)lx e M, \ U By, (x5, g,->}-
B=1
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As in the proof of Lemma 2.1, one may bound supMoo(HSnzoo (x)) by
the constant  C(n, m) in (2.2). Thus by (2.7), the Volume Comparison
Theorem, and the convergence of (q&fl)* g; in fact (2) above, there is a
constant C independent of i such that

(2.8) /M_'ua vl ()4, <0

272 e (r).

Now applying Proposition 2.1, i.e., the L 2_estimate of 5—opcrators, we
have a C*-smooth K, ,"-valued function u, such that

(2.9) Bu, = Bv,
2 _ —_ 5
2.10) /M,- il (x) AV, < - /M 19,01, (x)dV,,
. C 2n—2
Srn_|_1(rri +e(ri))-

By (2.9), for each i , the norm function ||, ”; satisfies the elliptic equation

Al ()
= D12 (x) = nmlju, i} (x) + 2Re(h]" (u,, 3;0,9,))(x),

where 5:‘ is the adjoint operator of 6 ona K, "_valued function with
respect to g;. As in (2.5), we also have

(2.12) sup{|15i*5,.v,.||;(x)|x € MAB,, (x5, 8)} —0 asi—oo.

Using (2.9), (2.10), (2.11), and (2.12), we see that u, converges uniformly
to zero in the sense of the remark after Lemma 2.1 as i goes to infinity.
Put

(v, - ()
g, v, = 12 () @V, )72

Then {Si} is the required sequence.
Lemma 2.3. Let {(M,, g)} and (M, g, ) be given as in Theorem

1.1. For each integer m > 0, we have orthonormal bases {S,’;lﬂ}0< B<N
(resp. {S,3}) of H'(M,, K;['") (resp. H'(M_, K;['")). Then

(2.14) lim (mf{Zn ﬂ|| x)})>1nf{2” ,,Il (x)}.

(2.13) S'(x) =
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Proof. By direct computations, we have
j 2 j 2
(2.15) Ai(IIDiS;ﬂIIg,)(X)=IID,-D,-S;,,,;IIgi( )= ((n+1)m=2)||D; mﬂll (x),

where A; (resp. D)) is the laplacian (resp. covariant derivative) with re-
spect to g;. Then by (2.1), Lemma 1.1, and a standard Moser’s iteration,
there is a constant C'(n, m) depending only on n, m such that

(2.16) sup{||DiS:nﬂ||§i(x)|0 <B<N,, xeM}<C'(n,m).

Combining this with (2.2), we conclude that the first derivatives of
Eﬂ oIS, ﬁ|| (x) are uniformly bounded independent of i. Then (2.14)
follows from this and Lemmas 2.1 and 2.2.

Theorem 2.1. There exist a universal integer m, > 0 and a universal
constant C > O such that for any Kéhler-Einstein surface (M', g') in
either K (u, n) or K_(u, n), we have

Nm
. 1,2
(2.17) inf SISHIE § > C >0,
B=0

where N, +1 is the complex dimension of H° M, K _m") and {S; Yo<pan

is an orthonormal basis of H° (M K °) with respect to the inner product
induced by g'.

Proof. 1t suffices to prove that for any sequence of a Kihler-Einstein
surface {(¥,, g;)} converging to a Kéahler-Einstein orbifold (M_, g_ )
in the sense of Theorem 1.1, there exist m;, > 0 and C > 0 such that
(2.17) holds for these (M;, g;). By Lemma 2.3, it is sufficient to find a
large m such that

(2.18) 1nf{Z||S°° P(x)|x e M }>0,

where {anoy} and N,, are given as in Lemma 2.3. This is equivalent to the
fact that for any point x in M__, there is a holomorphic global section
S in HO(Mo<> , K,,") such that S(x) # 0. The latter can be achieved
by the application of an L*-estimate (Proposition 2.1) as follows. Let
X_y» " » X,y be the singular points of M_ . There is a small positive
number r independent of B such that for any x__ P in M__, the closure of
each connected component in B,(x_ 5 8. I\ {x,, ﬂ} is locally uniformized

by a neighborhood U,; (1 < j </;) of the origin 0 in C" with finite
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uniformization group F . Let = 8 U — B (x_ 55 8 ) be the natural
projection with Mg, (0) = x cof and q = Hl<ﬂ<N Hl<]<R qﬂj) where
dg; is the order of the finite group F . Let m = pgq. We will choose
p later. We may take r to be suﬂiciently small such that the function
Pg = dist(-, x_,) is smooth on Br(xooﬂ, goo)\{xooﬂ} for any f. Now
fix an Xoog and Uﬂj.
Let (z,, ..., z,) beacoordinate system on U 8 and define a g-antica-
nonical section v by

v(y)=a§ o ((612/\-.-/\8(2)4)@), yeffﬂj.

By the definition of ¢, we have v(0) # 0. Let 7: R' — R, be a cut-off
function such that #(¢) = 1 for t < 1, and #n(¢) = 0 for ¢t > 2 and
' (£)) < 1. Then w = n(4pﬂ/r2)(nﬁj)*(v") is a C*-global section of the
line bundle K . Choose a large p depending only on r such that for
tangent vector v of type (1, 0),

_ 4 ;
(2.19) <aa (4nn (rp )log (’:ﬂ» +%wgw, u/\v>g > [vll}_

Applying Proposition 2.1, we obtain a C°° smooth K, -valued function
u satisfying du = dw and

2 _ _ 2
|l et ay, < [1Bwl} e D ay, < soo.
M, oo oo 8o oo

It follows that the pullback n;; U of u vanishes up to order 2 at the origin
in (N/Bj cC". Put

w-—u

(2.20) ;
a0 —ully_av, )'*

Sp; =
then S, € HO(M<>c> , Kﬂm) and infﬁﬂj{n;fllsﬂj“goo (x)} > 0. By the same

arguments as in the proof of Lemma 2.3, one can bound the first deriva-
tives of these Sﬂ ; bya uniform constant. So if r is taken sufficiently
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small, we have

mf{Znsm IxeB(xooﬂ,goo), 1gﬂgNm}

. 2 ~ .
> inf {1155, 1}_() | x € 15, (Dy). 1PN, 1<jsh,)>0.
For any point x in M \Ug B, (xooﬂ, 8.,)» define p = dist(-, x).
As above, by applying Proposition 2.1 to K, -valued d-equation with

the weight function 4nn(4px/r )log(px /r ), one can easily construct a
holomorphic section S in H® (M, K_m) such that S (x) # 0. Thus
the inequality (2.18) is proved and so is Theorem 2.1.
Corollary 2.1. The Kdhler-Einstein orbifold (M__, g_) is irreducible.
Since we do not need this result, we omit its proof here and refer readers
to Proposition 5.2 in [20].

3. Application of Kohn’s estimates of CR-manifolds

Let {(M;, g;)} be the sequence of Kihler-Einstein manifolds in either
K, (u,n) or K_(u, n) asin §1. By Theorem 1.1 and Corollary 2.1, these
(M;, g;) converge to a Kihler-Einstein orbifold (M_, g ). Precisely,
there are points Xx;;, -+, X; in M, and x_, -, X, In M_ satis-
fying: for r > 0, there are diffeomorphisms ¢;g;, and ¢; o J; o (qﬁi_l)"=
converging to g, and J_ , respectively, in C’-norms. The purpose of
this section is to study the holomorphlc structure of B (x, 8 g;) for suf-
ficiently small r and large /. The main analytic tool is Kohn’s estimate
for O,-operators.

Let P, (-, +) be the distance function on M_ x M_ . For simplic-
ity, we may assume that N = 1 and write x; for x;, and x_ for
X, . For each sufficiently small » > 0, the level surface 0B (x ., &)
of p_(-,x,) issmooth. The Levi form on 3B (x_, g.) isthe natural
hermitian form on the (n— 1)-dimensional space 7''*% M _N(TH_ ,&C)
given by

(L, L)) =2(00p (-, x,), Ly AL,),

where H__  denotes the level surface 0B, (x_, &) -

It is easy to see that this form is positive definite for r small. In fact,
Po(X,, » +) is convex near x_ . Therefore, each H_, is a strongly pseu-
doconvex CR-manifold. Similarly, if we define H;, to be the level surface
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-1
{x € Mllpoo(xoo 3 ¢[ (X)) = r},

then the H, are also smooth strongly pseudoconvex CR-manifolds.
Define the following for r > 0:

. 1 .1
Beor = _r_2goo > 8 = r_2gi >
5 |
(Ly, Ly), = 5(03p,,, LNL) VL, L,eT"OM _n(TH,, ®C),
r .
. 2 ~1 - 1,0
(Lyy L)y = 508(p 97 ), Ly ATy) VL, Ly € TV M, 0(TpH,, ©C).

Lemma 3.1. As r goes to zero, (H_ ,8 . ,(+,),,) converges to
(S2"_1/F, ds?, (+,+);), where T C U(n) is a finite group, ds* is the
metric with constant curvature +1, and (-, -), is induced by the standard
Levi-form on the unit sphere. :

Proof. It follows trivially from the boundedness of the curvature tensor
Rm(g,,) -

Lemma 3.2.  There is a subsequence {i;} such that there are diffeomor-

phisms ., from S onto H where r=1/j, satisfying:
J

e

(1) 197 &, —ds’ll sty < #(j), and

@) 107 (- )y, = (s yllesgnmty < ).
where ¢(j) — 0 as j — co.

In other words, (H, o, ,gl . (-, ')i,.r,.) convergesto (S**', ds?, (-, )
as j tends to lnﬁmty

Proof. Because of the convergence of (M, g;) to (M__, g_), for each
J there is a diffeomorphism ¢, from MOO\BTJ_ /10X 5 Eo0) 1ntO M,.j for
some i; satisfying:

(1) M,\Byp, (x; . ) € (@),

(2) ”qs;g,'j - goo“CS(Moo)<1/j and

(3) ||¢;Jij = Jollesary < < 4, where J;, and J,, are almost complex
structures on M,.j and M__ respectlvely

By Lemma 3.1, there are diffeomorphisms 6 ; from S
such that

(i) IIQ;“ —ds* s sty < ¢'(j), and

(ii) ”0;( H )oorj _( > )S”CS(SZ"_’) <e (]) P

2n—1
onto H_
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where £'(j) — 0 as j — oo. Now our y; are just the compos1t10ns of ¢
with 0 q.ed.

leen a complex manifold X with strongly pseudoconvex boundary
Y, we define 7:9(Y) to be the space of smooth sections of the vector
bundle Q°*Y(X)NA”"*(TRY ® C) on Y. The 9-operator of X induces
the 8,-operator from &7 4(Y) into &7 **'(Y), explicitly, 9,¢ is the
projection of 3¢ onto B4 (Y). Let 3, be the adjoint operator of
5b on Y with respect to the induced metric on Y from X and the Levi
form.

Since 3° = 0, it follows that 5,2) = 0, so we have the boundary complex

3 3 _
037" 2, @', 2P .

- Then the cohomology of the above boundary complex is called the
Kohn-Rossi cohomology and is denoted by H?'?(%). We recall the fol-
lowing proposition.

Proposition 3.1. Let X, Y beasabove. Then for 1 < q < n—2, the co-
homology H***(Z%) is finite dimensional, and the range of 8,: %B"* a-l
#"? is closed in the C™-topology.

Let H be the universal covering of H ; then they are diffeomorphic

-1 onto

to S§¥ 1. In fact, Y, induces these dlﬁ'eomorphlsrns from §
H ir still denoted by .
Lemma 3.3. Let n > 3. There is a uniform constant C > 0 such that
Jor j sufficiently large,
2 = 2 =% 2
(3.1) Cllully < 110,ully + 110, ully
forany u in B°'(H H;), where | -||, denotes the L*-norm induced by the
metric g, , ; and Levi form («5 ) r
J J
Proof. Let l be the smallest elgenvalue of the operator of [, =
] 8b +8b8b on .%’0 1( H;). Then (3.1) is equivalent to A;2c>0.
Suppose that the lemma is false. Then we may assume that A ;o 0 as
J — oo. By Proposition 3.1, the eigenspace of A ; is of finite dimension.
Pick up an eigenfunction u; for A; with |lu ), =1. Then
2 = 2 =* 2
lj“ujllz = ||3buj||2 + ”8buj”2 .
Since (H;, &, (-, );,) convergesto (s™ 1, ds*, (-, -),) inthe C*-
topology, by Kohn’s estimate for [J,, these u; converge t0 u, in
(1) satisfying
flu ll,=1 and O,u=0.
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In particular, u_ gives a nontrivial cohomological class in H 0.1 (Z (Sz"‘ 1)),

However, it follows from Theorem A in [26] that Ho’l(,@ (Sz"_l)) =0 for
n > 3, a contradiction. Therefore, (3.1) holcls. N
Lemma 3.4. There exist embeddings 1;: H; — C" such that the 1 L(H))

converge to S gs submanifolds in C" in the C4-topology.
Proof. Let z,---, z, be the standard coordinates in %" . The re-

strictions of these to $2"~! are CR-functions denoted by the same letters
for simplicity. Define
-1 . .
Zy=2z,0Y; 1<i<n, j>»0.
Then sup, ;. ,{l19,(z; o ‘/’j)“c“(ﬁ)} < Ce(j), where C is a uniform con-
- = J

stant, and £(j) — 0 as j — oo.
By Lemma 3.3, there are v solving

O,v,; = 0,(z; 0 t//j_l) on H
with
& 2 pmA 2 2 - —1,,2 .
050515 + 110 pv,ll; + llvy;ll; < Cill0,(z;-w )iy < CCe().

— -1 a* . ) —
Define z;; =z,0y; — dyv;;5 then 9,2, =0.

Using Kohn’s estimate for the gb-operator, we have
— . — -1 .
is;gj{lla bvijllc4(§j)} <G é\fg}, 10,(z; 0 %; )!IC4(§j) < Cue(j).
The required maps z; assign x in ﬁj to (z;;(x), -+, z,;(x)) in c”.
Since 51;2;7 = 0 and (ﬁj, & ,,(+,);,) converge to (s> ds?,
7' 7' -
(-, +),) through ¥, these 1, are CR-embeddings of H; such that the

images approach S*"~!  Hence the lemma is proved. gq.e.d.

Choose a large m such that the basis {s;°,..., S;,i} of H O(Moo , K;;:)
gives a Kodaira’s embedding of M_ into C Pn , where N = =
dim. H 0(Moo , K ;1:) — 1. Moreover, we may arrange these S;o such that
8o (x,,)#0, and Sy (%,,) =0 for > 1. By Theorem 2.3 in the previ-
ous section, there are bases {Sé} of HO(Ml.j , K;{:') converging to {S5’}.
In particular, for j sufficiently large, these bases {Sé} give embeddings
of Ml.j into CP™ . Fix a small r > 0; then for j large we have local
embeddings

‘cj:Br(xij)—>CN’", roo:Br(xoo)—>CN’".
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Denote by w,, --- , w N, the coordinate functions. Let m; H — H be
the covering maps. Then the compositions w 5OT; (1 < B < N ) are
CR-functions on H iE Now by the previous lemma, H f bound strongly
pseudo-convex domains BJ. in C". Moreover, these Bj converge to the
unit ball in C” as j approaches infinity.

Lemma 3.5. Each w gON; can be extended to be a holomorphic function

It
ﬂProof. Since B j is a domain in C”, there is a nonconstant holomor-
phic function on B Iz This lemma then follows from Theorem 5.3.2 in [6].
q.e.d.

Define

h

. N
T':‘(hij’“.’thj):_»C ’?'.
Then % ; coincides with 7 ;om; on H ;> 80 by the analytic unique con-

tinuation, the image 7,(B ;) coincides with part of < ;(B,(x; j)) . It follows

that there are holomorphic maps 1;1 o7 ; from B ; onto the domain in

B (x; j) enclosed by H, , in particular, 1;1 of ; immersions near Hj and
]

finite maps on B.. ; For simplicity, denote ‘c_l of; by 7
Lemma 3.6. Let T be the fundamental group of H Then T acts on

H as a CR-isomorphism group, and can be extended to be automorphisms
of B; . In particular, T'cU(n).

Proof It is clear that each o € I' preserves the CR-structure of H , as
a deck transformation. Therefore, the CR-functions z,00,--- , z,00 can
be extended to be holomorphic ones in Bj (cf. proof of Lemma 3.5), that
is, o extends to be a holomorphic map from B ; into itself. The extension

must be an automorphism since ¢ has degree one near H iE q.e.d.

As a finite group in U(n), I' has at least a fixed point in Bj if it is
nontrivial. This implies that % /T" is singular, contradicting to the fact
that B, (x;) is smooth for each j. Therefore, I = {id}, and M__ isin
fact smooth.

Summarizing the above, we have

Theorem 3.1. Let {(M,, g;,)} be a sequence of Kdihler-Einstein mani-
Jolds in K _(u, n) (resp. K_( n)). Then either (M,, g;) converges to a

Kdhler-Einstein manifold in the C 5-wpology, or there is a smooth Kdihler-
Einstein manifold ( oo, 8) in K _(u,n) (resp. K_(u,n)) such that a
subsequence of {(M;, g,)}, say {( M, , &)} itself, converges to (M, &)
outside finitely many points in the c? -topology.
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4. Proof of Theorem 2

In this section, we classify all complete Ricci-flat Kihler manifolds
(X, g) with euclidean volume growth and [, [Rm(g){" d V, < oo, where
n =dim, X . Let us fix one of them, say (X, g).

Lemma 4.1. There is a decreasing posztzve Sfunction s(r) with
lim,_,  &(r) =0 such that

&(r(x))
r(x)*
where r(x) is the distance function from some fixed points.

Proof. Choose &(r) to be a decreasing positive function such that
lim,_, &(r) =0 and

(4.1) C IRm@)l,(x) <

/( ||Rm(g)|| d < E&(r) foerc’?Bzr(xO)
x,8)

Now for each fixed x in 0B, (x,), define a new metric g_= g/ r*; then
g, has vanishing Ricci curvature, and

[N LS AR O
B,(x,g,) * *

On the other hand, since (X, g) has the euclidean volume growth there
is a constant C’, independent of r, such that

! 2n

Vol (B A O,g))>Cr ,

so by the Volume Comparison Theorem [2],

Vol (B,(X, g)) > — Vol (B, (X, 8))

42
1 c

42 Vol (Bz,( , 8)) 2 ﬁ" *

It follows that Vol e, (B)(x, g,)) = Vol (B,(x, g,))/ r? is not less than

a uniform positive constant C’/42". So we can apply Lemma 1.2 to
(B,(x, g,), &,) and obtain .

(4.2) IRm(g ), < Cé&(r),

where C is a constant independent of x . Take &(r) = Cé&(r). Then (4.1)
is nothing else but (4.2), and the lemma is proved. " qg.e.d.



COMPACTNESS THEOREMS FOR KAHLER-EINSTEIN MANIFOLDS 555

Consider a sequence of complete Ricci-flat Kéhler manifolds (X, g;) =
(X, g/iz). By Lemma 4.1, |[Rm(g,;)|l, are bounded by &(i)/d out-
side By(x,, g;) forany ¢ > 0. Theréfore, we can proceed as in §1
to show that (X, g;), by taking subsequences, converges to a complete
Kihler orbifold (X__, g). In fact, the proof in this case is much sim-
ilar, and (X_, g, ) is flat because of Lemma 4.1. Therefore, X =
C"/T with unique singular point o in U(n). In particular, there are
smooth diffeomorphisms y; from Xi\B1 /Z(xo, g) mmto x_\B, /4(0, &)
such that ||(q/i"1)*gl. - goo“CS(Xw,gw) = o(1) as i goes to infinity. Put
= (//l.—l(BB1 0, g.)),and let )El. be its universal covering. Then the f.i
are strongly pseudoconvex CR-manifolds and converge to s> 1 in C".
Thus by Lemma 3.4, for i sufficiently large, these ii can be holomor-
phically embedded into C" and bound domains B; there. Moreover, T’
acts on Bi" by holomorphic transformations.

On the other hand, if we denote by p2 the square of the euclidean dis-
tance function from o in C” /T, then the 1//1.* p2 are convex functions near
I';. So by Grauert’s theorem [8], for each large 7, there is a holomorphic
map v;: E, — " which is actually an embedding near I', = 0E,, where
E, is the bounded domain enclosed by X, .

Lemma 4.2. Foreachfixed i,if w, -, w N, are coordinate functions

of ™, then the CR-functions w IR = C" can be extended to be

holomorphic ones in B;', where m;: )51. — X, are natural projections.

We omit its proof (cf. Lemma 3.5).

It follows that there are holomorphic maps ¢,: B /T — v,(E,), which
are embeddings in the neighborhoods of X, .

Lemma 4.3. For each i, there is a holomorphic map p;: E; — B;' /T
such that v, = ¢op,.

Proof. It is easy to see that qbl._l(x) contains exactly one point in B;’ /T
for x in v,(E;). Let D, ---, Dil,. € E; be analytic subvarieties such that

vt ov,(D

; ) contains more than one point. Then the v,(D;;) are isolated

ij
points. Define p;, = qbl._l °v, outside these D, , -+, Di[i; then p; is a
holomorphic map from Ei\Uiglel.ﬂ into B} . Since B; is bounded,
the map p, can be extended across D, 5 In particular, this implies that
[, =1, ie., there is only one connected component, and v,(E;) has only
one singular point, so v,(E;) = B{' /I'. q.ed. :

It follows that X is the resolution of C"/T". Hence Theorem 2 is
proved.
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5. Proof of Theorem 1

In this section, we will finish the proof of Theorem 1.

Let {(M,, g;)} be a sequence of Kihler-Einstein manifolds either in
K, (u,n) or K_(u,n). By Theorem 3.1, (M, g;) converges to a smooth
Kéhler-Einstein manifold (M__, g ) outside finitely many points. Pre-
cisely, there are x,;, -+ , x;y satisfying: for each r > 0, there are diffeo-
morphisms ¢, from M_\ Uf,Ll_Br(xoo 57 8&o) Into M; containing
M)\ nglBZr(x,.ﬂ ,&;) suchthat ¢, g. convergesto g inthe C’-topology.
Each B,(x_,, &) Wwith small r is a smooth ball in C". So B (xy, &)

are smooth balls in C” | too.
We need to show that the Rm(g;) are uniformly bounded in

ULI B, (x; 58;) - Suppose it is not true. Then by taking the subsequence,
we may assume that ,uf =||[Rm(g)ll, (v;) —+oo forsome y, in B (x;,, ;)
where lim, , _r, = 0. Define new metrics on M, by

b= 18

Then the pointed manifolds (B,(x;,, g;), #;, ¥;) converge to a complete
Ricci-flat Kéhler manifold (X, /) with [, [[Rm(h)|; dV, < co, where r
is a fixed small positive number.

Lemma 5.1. X is a Stein manifold.

Proof. Let (M,, g;) be in K. (1, n) forall i. The proof of the other
case is identical.

Fix an m > 0 such that the basis of H 0(Moo , K;lm) gives an embed-
ding of M__ into some projective space. In particula;c,> there is a positive
constant C satisfying

N
. o002
min {Z ISI% (x)} >2C >0,
where N = dim, HO(MOO , K;{: ), and {S;°} is an orthonormal basis of

HO(Moo , K,/") with respect to g__ .
By Theorem 2.1, for i sufficiently large,

i

N .
(5.1) min {%ns;,n;(x)} >C>0,

where the {S;} are orthonormal bases of HO(JWI. , K A}m) with respect to
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g;. Let §i be the section of K,/ satisfying:
~ 2 4
(1) fM,- I1S:1g, @V =1,
S 2 2
(2) 1Sl ) = sup{|ISllg ()l fM,, IS, @V, =1}

Then for i sufficiently large and r sufficiently small,

5.2 min (|S.|)>C>0.
(5.2) B'(x“’gl_)(ll D>

Define u,(x) = —log(HS‘,.||g_(x)/H§,-||g_(J’,~)). Then the u, are uniformly

bounded smooth functions in B,(x;,, &) satisfying:

V-1, .
g = ——2766141. in B,(x;8,),
40 =, i, 1= 0.

Therefore, w, =V —165(;1?141.) /(2m), and ufui converge to a smooth

function ¥ in X such that w, = v/—189u/2n . This implies that X is
Stein, and hence the lemma is proved. q.e.d.

By Theorem 2, X is a smooth resolution of some C”/T". Therefore,
X hastobe C"/T", and T is trivial since X is Stein.

Thus (X, #) must be flat, contradicting that max_ ||[Rm(#)||, = 1. This
finishes the proof of Theorem 1.
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